
A Replication Toolkit for J2EE Application Servers

Huaigu Wu Bettina Kemme
McGill University

hwu19, kemme@cs.mcgill.ca

Alberto Bartoli
Università di Trieste

bartolia@univ.trieste.it

Simon Patarin
Università di Bologna
patarin@cs.unibo.it

1 Introduction

Web service technology allows organizations to provide
programmatic interfaces to the services they export. In most
cases, these services are implemented with a multi-tier ar-
chitecture consisting of a client external to the organization,
a middle-tier and a back-end tier. The middle-tier typi-
cally uses the infrastructure of an application server (AS)
whereas the back-end tier consists of a database system. In
this demo we present our work for enhancing current AS
technology with flexible and transparent failure manage-
ment. We consider multi-tiered services based on the J2EE
architecture and replicate the middle-tier for fault-tolerance.
The novelty of our contribution consists in the guarantees
we provide with respect to failures. Our work has been car-
ried out as part of the ADAPT project (Middleware Tech-
nologies for Adaptive and Composable Distributed Compo-
nents), whose results are summarized in [3].

In a multi-tier architecture execution across AS and the
database is usually performed in the context of transactions.
Transactions provide durability for the data stored in the
database, atomicity (all-or-nothing) and isolation of con-
current transactions on both the AS and the database. Al-
though all persistent data is stored in the database system,
the AS can maintain data that can exist across several client
requests in order to efficiently execute the business logic. A
typical example is session information. We say that such
application servers are stateful.

Our proposal provides fault-tolerance for stateful AS by
making use of replication: an AS runs with several in-
stances (replicas), and if one replica crashes, the others will
take over its tasks without interrupting the service offered
to clients. We enforce the following correctness require-
ment, that we state informally: the service as a whole be-
haves as its non-replicated counterpart. This notion of cor-
rectness encompasses both the AS layer and the database
server layer: as long as the client does not crash, a transac-
tion must be executed exactly-once (if the client crashes the
semantics is at-most-once) [6]. Note that this correctness
requirement implies that the set of ASs must maintain state
consistency internally. That is, if a transaction commits at

the database, each available AS replica must have the state
changes performed by this transaction. If the transaction
aborts at the database, all available AS replicas must know
about the abort and be able to return to the previous state.

It is simple to realize that fulfilling our correctness re-
quirement necessarily involves some form of coordination
amongst ASs. Since ASs are stateful, any state change per-
formed on a AS must be known by the other replicas. Oth-
erwise the crash of an AS would lead to data loss, which
might lead to unexpected results for the clients and violate
the correctness requirement. Transaction management must
be carefully coordinated as well. On the one hand, the crash
of an AS might leave the database in an unexpected state be-
cause transaction execution spans over both the AS and the
database. On the other hand, the set of ASs must maintain a
consistent notion of which transactions have been commit-
ted at the database layer and which ones have been aborted
(the state consistency issue mentioned above).

Many of the recently developed application server prod-
ucts follow the J2EE specification [8]. Although many of
them use replication to tolerate server failures, e.g., We-
bLogic [5], WebSphere [9], and JBoss [7], we are not aware
that any of them guarantees both exactly-once transactions
and state consistency in all crash cases for stateful AS. This
motivated us to develop a suite of replication algorithms
providing these guarantees in [11, 10]. We implemented
these algorithms as an open-source toolkit based on the
JBoss application server [3].

Although good performance and strong consistency
guarantees in the presence of failures are rather conflict-
ing requirements, we obtained a satisfactory trade-off be-
tween the two. We run the ECperf benchmark and found
that our system compares favorably against the JBoss clus-
tering solution for high availability. This is a significant
result, having considered that JBoss clustering provides nei-
ther exactly-once execution nor state consistency (see [11]
for details). In this demonstration, however, we will focus
on failure management and show how our toolkit handles
both failure and recovery of AS replicas for various fail-
ure scenarios. In particular, we will show that the replica-
tion algorithm behaves as expected irrespective of when an

AS failure occurs, i.e., irrespective of which portion of the
replication algorithm is being executed when an AS crashes.
Giving a demonstration of this kind is not a trivial task be-
cause failover happens behind the scenes. Hence, we have
developed a graphical user interface that illustrates the flow
of execution and the actions upon failure and recovery at
the various server replicas and allows forcing AS failures at
selected points of the replication algorithm.

2 Replication of Stateful J2EE Server

J2EE architecture In the J2EE architecture the business
logic is implemented by means of objects called Enterprise
JavaBeans (EJB) and hosted by the AS. Two kinds of EJB
can maintain state. Stateful session beans (SFSB) main-
tain internal state for the lifetime of a caller session. Entity
beans (EB) represent persistent data in the database. State
changes take place in the context of transactions. State
changes in the database are persistent while changes on
AS components remain volatile. If a transaction aborts,
any state changes performed on the database are undone by
the database system whereas state changes on AS compo-
nents ramain. Some ASs, however, allow specifying roll-
back methods for SFSBs. In this case, the AS will invoke
these methods automatically if the transaction aborts.

Transactions can be demarcated in several different
ways. The very basic execution pattern provides all-or-
nothing execution for each client request: each client re-
quest initiates a single transaction T and accesses only one
database, and the entire request execution on the AS and the
database is performed within T . We presented a replication
algorithm for this pattern in [11]. More complex execution
patterns are supported: the client may begin and terminate a
transaction explicitly, in which case more than one client re-
quest may be involved in a transaction; a client request may
initiate more than one transaction; a transaction could also
access more than one database, in which case a 2-phase-
commit protocol among the participating databases and AS
is needed. We present replication algorithms for these ad-
vanced patterns in [10].

Due to the time restrictions, our demonstration will fo-
cus on the basic execution pattern and assume that the AS
supports rollback methods for SFSBs. We will also con-
sider only transaction aborts caused by AS crashes and ig-
nore aborts caused by application semantics or database er-
rors. We refer to the system presented in this demo as the
ADAPT-SIB toolkit.

Assumptions The replication algorithm considered here
is based on the following assumptions. Communication is
asynchronous and reliable. Individual components within
a server do not fail. An AS may fail entirely by crashing.
Databases and clients do not crash. Clients and components

are single-threaded that block when waiting for the response
of a request. Execution does not need to be deterministic,
though. When an AS replica crashes, the database will au-
tomatically abort all active transactions (not yet committed)
that have been submitted by this replica. The algorithm
is built above a group communication system (GCS) pro-
viding uniform reliable multicast delivery and membership
management (failure detection and notification).

We remark that our more complex replication solution
[2] handles network partitions to the client, allows clients
to fail, and is able to work with a replicated database (that
provides fault-tolerance of the database tier).

Replication Algorithm The replication algorithm can
only be outlined here due to space constraints. Full de-
tails can be found in [11]. We use a primary/backup model
where state changes to SFSBs are propagated to the back-
ups. Changes to EBs are not propagated (they are always
written to the database at commit time and are read from
the database at failover).

The client attaches a unique identifier to each request
and sends the request to the current primary. If the client
receives a failure exception instead of a normal response,
it resends the very same request to the new primary (after
having determined who is the new primary).

The primary executes a client request within a transac-
tion T . At commit time, it multicasts a committing message
containing the request/response pair and a description of all
EJBs changed by T (the full state changes for SFBSs, the
identifiers for EBs). Moreover, it stores the request iden-
tifier into the database as part of the transaction T . When
the primary receives confirmation from all available back-
ups that they have received the multicast (i.e. uniform reli-
able message delivery), it commits T , returns the response
to the user, and multicasts a committed message.

When the primary crashes, the backups are informed by
the GCS. One backup becomes the new primary and per-
forms failover. It applies the state changes for SFSBs in-
cluded in each committing message for which it has re-
ceived the committed message (this can be done already
during normal processing to speed up failover), retrieves
the state of the EBs from the database and constructs the set
of all request/response pairs. For committing messages for
which no corresponding committed message was received,
the new primary can determine whether the correspond-
ing transaction has committed at the database by check-
ing whether the request id exists in the database or not. If
yes, the database transaction successfully committed and
the new primary performs the same actions as if the com-
mitted message had been received. Otherwise, it means that
the database transaction was aborted upon crash of the old
primary. Hence, the new primary ignores the committing
message. When the new primary receives a client request,

it checks whether the request id identifies one of the exist-
ing request/response pairs, and if yes, returns immediately
the response. Otherwise it executes the request as usual.

To show that both state consistency and exactly once
execution are guaranteed, we discuss the most significant
crash cases, i.e., when the primary crashes before return-
ing a response to the client. There are four cases to con-
sider. (1) The primary crashes in the middle of execution of
the request. Hence, the database aborts the corresponding
transaction T upon the crash, and the new primary has not
received any message. The request resubmitted by the client
is simply executed. (2) The primary crashes after sending
the committing message, but before the database commits
T . Hence, the database aborts T upon the crash, the new
primary checks at failover in the database for the request id,
does not find it, and hence, does not apply the changes in
the committing message. The resubmitted request is sim-
ply executed. (3) The primary crashes after committing T
but before sending the committed message. The new pri-
mary checks at failover in the database, finds the request id,
and hence applies the changes in the committing message
and stores the corresponding request/response pair. When
the client resubmits the request, the new primary immedi-
ately returns the response. (4) The primary crashes after
sending the committed message. The new primary applies
the changes in the committing message and stores the re-
quest/response pair. When the client resubmits the request,
the new primary immediately returns the response.

Recovery Algorithm Our system is able to integrate pre-
viously failed or completely new replicas into the system.
In this case the joining replica has to receive first the cur-
rent state and then will become a backup. To this end, one
of the existing replicas, referred to as the peer, must send its
current state to the joining replica, which occurs as follows.

The new replica joins the group maintained by the GCS.
The existing group members are informed via a group
change message, and the new replica receives all multicasts
issued by the current primary from then on. The peer node
is decided on by means of a simple agreement protocol.
The peer sends a recovery message to the joining replica
via point-to-point communication. This message basically
contains the committing and committed messages that are
needed to reconstruct the state in case the new replica has
to perform failover. The joining replica might receive com-
mitting and committed messages from the primary before
receiving the recovery message from the peer. It puts those
messages in a queue Q. Upon receiving the recovery mes-
sage, the joining replica processes the included committing
and committed messages, and then processes the messages
in Q. The recovery message might contain messages also
enqueued inQ. These messages are removed fromQ before
the backup algorithm can start processing messages fromQ.

Client Replicated J2EE Server

client

J2EE server
at client side

RMI Stub

PrimaryJ2EE server

RMI
Skeleton

EJB

Client Replication Manager Replication Manager

RCS CH

Replication Protocol
Replication Protocol

at client side

RCS: Remote Componet Stub
CH: Component Handle Backup J2EE server

Replication Framework

Replication Manager

Replication
 Framework

Replication
 Framework

Figure 1. The ADAPT framework separates
the replication algorithm from the J2EE
server.

3 Implementation

The implementation is based on a J2EE replication
framework that we designed and implemented [1]. The
framework eases the prototyping of replication algorithms
at the application server layer, on the grounds that to design
and evaluate a replication algorithm for J2EE (or any prac-
tical component architecture) requires a substantial invest-
ment in development. With this approach, the task of devel-
oping a replication algorithm is factored into two portions:
(i) the framework itself, which handles all the detailed in-
teractions with the underlying application server code, and
(ii) the specific replication algorithm. When a component
is invoked, the framework transfers control to the replica-
tion algorithm that may perform any actions, such as set-
ting component state or communicating with other replicas,
before continuing the invocation. Through the framework,
the replication algorithm sees an highly abstracted view of
the component, the invocation, and the other elements of
the server. The developer codes a replication algorithm by
implementing a simple API, and deploys it by moving the
classes into the server’s deployment directory. Fig. 1 shows
how the framework separates the J2EE server from the
replication algorithm implemented within the replication
managers. The framework has been implemented for the
JBoss open-source application server and the Axis SOAP
engine (in case of web services). We have developed several
replication algorithms on top of this framework, including
the ADAPT-SIB toolkit that will be shown in this demo. We
use Spread (http://www.spread.org) as GCS, as it
provides the required functionality efficiently. We access
Spread through JBora, a thin middleware layer that we have
developed (see [4] for its features).

Figure 2. Demonstration user Interface

4 Demonstration

The demonstration will show how our ADAPT-SIB
replication algorithm running over the ADAPT framework
and JBoss, tolerates different crash scenarios and recovery
of the application server. Two replicas of JBoss 3.2.3 will
be deployed on two Linux machines which can communi-
cate through JBora/Spread. One will act as the primary, and
the other as the backup. The backend database is Postgres
SQL 7.0, which is running in a Linux machine. We use a
java program with GUI to simulate the client, which is also
running in a Linux machine. Figure 2 shows the client inter-
face. For simplicity, the database, the client and the backup
will all run on the same machine.

Our example application consists of a single SFSB. This
bean has a single attribute that stores color information. The
database maintains a table with one integer attribute and a
single record. The SFSB provides two methods. An initial-
ization method takes as input an initial color, a parameter
that indicates how subsequent requests should change the
color, and a parameter that indicates by how much the inte-
ger value stored in the database should be increased by each
request. The other method, that we call doStep(), has no in-
put parameters. Executing this method changes the color of
the SFSB and increases the value of the record stored in the
database according to the parameters given by the initial-
ization. It returns the newest color and provides the latest
value of the record in the database.

The client application will invoke the initialization
method at the beginning of the demo and then it will invoke
doStep() repeatedly. The client application, thus, will grad-
ually change the color attribute stored in the SFSB and in-
crease the integer value stored in the record in the database.

The client application has a graphical interface that
shows execution of each method invocation as a progress
bar. The replication algorithm is such that each execution
can be divided into four periods: normal execution, com-
mitting message sent, transaction commit, and committed
message sent. The graphical interface draws the progress

bar with different colors, one for each period. In particu-
lar, normal execution is shown with the color stored in the
SFSB, whereas the three other periods are always shown in
the bar as orange, red, and brown, respectively (for the pur-
pose of this demonstration, the AS has been instrumented to
send a message to the client application at the beginning of
each period). Furthermore, the value stored in the database
record will be shown besides the bar. The graphical inter-
face keeps the result of the last eight executions.

It will be possible to force the crash of the primary by
double clicking the progress bar. To show all possible fail-
ure scenarios, we enforce an artificial delay within each pe-
riod. The demonstration will show that color and data keeps
changing as in the failure-free case irrespective of when we
crash the primary, i.e., during which period. This is a subtle
but key property of our proposal. In a sense, it is this prop-
erty what makes the difference between “reliability guaran-
tees” and “cross-the-fingers” reliability.

The demonstration also shows recovery. Each server is
represented by a button. When the current primary crashes,
the backup becomes the new primary. Afterwards, we can
click the button of the crashed server to recover it. After it
is recovered it is a backup. If we crash the current primary,
the recovered server will become the primary again.

References

[1] O. Babaoglu, A. Bartoli, V. Maverick, S. Patarin, J. Vuckovic, and
H. Wu. A Framework for Prototyping J2EE Replication Algorithms.
In Int. Symp. on Distrib. Objects and Applications (DOA), 2004.

[2] A. Bartoli, R. Jiménez-Peris, B. Kemme, S. Patarin, M. Patińo-
Matinez, F. Perez, M. Prica, J. Salas, J. Vuckovic, H. Wu, and S. Wu.
Bs middleware platform, http://adapt.ls.fi.upm.es/Downloads.htm.

[3] A. Bartoli, R. Jiménez-Peris, B. Kemme, C. Pautasso, S. Patarin,
S. Wheater, and S. Woodman. The adapt framework for adaptable
and composable web services. In IEEE Distributed System ONLINE,
2005.

[4] A. Bartoli, M. Prica, and E. Antoniutti Di Muro. A replication frame-
work for program-to-program interaction across unreliable networks
and its implementation in a servlet container. In Concurrency and
Computation: Practice and Experience (to appear).

[5] BEA Systems Inc. BEA WebLogic Server, release 7.0: Programming
WebLogic Enterprise JavaBeans, 2002.

[6] S. Frølund and R. Guerraoui. X-ability: a theory of replication. In
Symp. on Princ. of Distrib. Comp. (PODC), 2000.

[7] The JBoss Group. JBoss Clustering, 2002.
[8] SUN Microsystems Inc. JAVA 2 Platform Enterprise Edition Speci-

fication, V1.3.

[9] H. Wang and M. Bransford. Server Clusters For High Availability
in WebSphere Application Server Network Deployment Edition 5.0.
Software Group, IBM Corporation, release 5.0 edition, April 2003.

[10] H. Wu and B. Kemme. Fault-tolerance for stateful application servers
in the presence of advanced transactions patterns. In Symp. on Reli-
able Distributed Systems (SRDS), 2005.

[11] H. Wu, B. Kemme, and V. Maverick. Eager replication for stateful
J2EE servers. In Int. Symp. on Distributed Objects and Applications
(DOA), 2004.

